A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme- and angiotensin II-induced vascular dysfunction in human endothelial cells
نویسندگان
چکیده
In this study, a marine microalga Spirulina sp.-derived protein was hydrolyzed using gastrointestinal enzymes to produce an angiotensin I (Ang I)-converting enzyme (ACE) inhibitory peptide. Following consecutive purification, the potent ACE inhibitory peptide was composed of 7 amino acids, Thr-Met‑Glu‑Pro‑Gly‑Lys-Pro (molecular weight, 759 Da). Analysis using the Lineweaver-Burk plot and molecular modeling suggested that the purified peptide acted as a mixed non-competitive inhibitor of ACE. The inhibitory effects of the peptide against the cellular production of vascular dysfunction-related factors induced by Ang II were also investigated. In human endothelial cells, the Ang II-induced production of nitric oxide and reactive oxygen species was inhibited, and the expression of inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) was downregulated when the cells were cultured with the purified peptide. Moreover, the peptide blocked the activation of p38 mitogen‑activated protein kinase. These results indicated that this Spirulina sp.-derived peptide warrants further investigation as a potential pharmacological inhibitor of ACE and vascular dysfunction.
منابع مشابه
The Higher Response of Vascular Endothelial Growth Factor and Angiotensin-II to Human Chorionic Gonadotropin in Women with Polycystic Ovary Syndrome
Background This research investigated the response of vascular active factors, vascular endothelial growth factor (VEGF) and angiotensin-II (AT-II) to ovarian stimulation during 24 hours in patients with polycystic ovary syndrome (PCOS). MaterialsAndMethods In this clinical trial study, 52 patients with PCOS and 8 control cases were stimulated with human chorionic gonadotropin (HCG) on the 4th ...
متن کاملEffect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide
Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...
متن کاملStudy of Serum and Tissues Angiotensin Converting Enzyme (ACE) Activity in Rat with Gentamicin Induced Renal Toxicity
The angiotensin I-converting enzyme (ACE) converts the inactive angiotensin I molecule to the active angiotensin II. ACE is rich in epithelium, endothelium, and neuroepithelial cells and it found largely on the brush border of intestine and kidney proximal tubules. ACE also presents in the serum. Some pulmonary and renal toxic drugs change the serum and tissue ACE contents. In this research ACE...
متن کاملDistribution and metabolism of angiotensin I and II in the blood vessel wall.
The demonstration of all components of the renin-angiotensin system in vascular tissue has raised questions as to the precise location of the local angiotensin II generation within the vascular wall. We investigated the metabolism of angiotensin I to angiotensin II in the vascular wall in the isolated rabbit thoracic aorta. Angiotensin I (3 x 10(-9) M) applied into the aortic lumen was partiall...
متن کاملNEP, ACE and Homologues: The Pathophysiology of Membrane Metalloproteases
The zinc metalloprotease, neprilysin (NEP), plays a role in the metabolism of cardiovascular, inflammatory and neuropeptides, including mitogenic peptides such as bombesin. In the cardiovascular system, NEP has a primary role in the inactivation of natriuretic peptides but also contributes to local metabolism of angiotensin, endothelins and bradykinin. Hence NEP is seen as a potential therapeut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2017